Abstract
Systematic studies, combining batch experiments with NMR spectroscopic methods, are carried out for phosphate sorption on titanium dioxide (TiO2). It is found that phosphate sorption on TiO2 decreases with increasing pH, whereas the phosphate uptake by TiO2 increases with increasing ionic strength of the solution. In I⩽0.1M, the sorption sharply increases and reaches a near maximum and then followed by little changes showing Langmuir-type behavior, whereas in I=0.7M, non-Langmuirian uptake becomes evident as equilibrium phosphate concentrations increase in solution. The sorption of phosphate on TiO2 is rapid and mostly irreversible at pH 4.5 and 7.0. At pH 9.0, however, the phosphate sorption is initially reversible and followed by resorption of phosphate on TiO2 at the system re-equilibration. 31P{1H} cross-polarization and magic angle spinning (CP/MAS) NMR spectra contain at least four main peaks which appear similar in position and width under all adsorption conditions, but vary in intensity with surface loading. The spectral characteristics of these peaks, including cross-polarization dynamics and chemical shift anisotropy obtained from spinning sideband analysis, suggest that they arise from distinct inner-sphere adsorption complexes, most of which are protonated. These results indicate that uptake of phosphate by TiO2 occurs by formation of several types of surface complexes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.