This research aims to evaluate drying kinetics and thermal performance, influenced by the type of glazing. A novel solar dryer that has a phase-change-materials (PCM), heat-recovery (HR), V-groove absorber, and photovoltaic (PV). The research was carried out on jelly candy objects treated with the influence of glazing (single-double-vacuum glazing). Jelly candy has an equilibrium moisture content using single, double, and vacuum glazing collectors, namely 11.59 % (wb), 9.94 % (wb), and 8.83 % (wb), respectively. Then, all types of glazing have an average drying rate value of 0.05 % (wb)/min for three working days. Based on the model accuracy test indicate that the Page and Verma et al. model are the best models for predicting drying kinetics in jelly candy. Specific heat (Cp) and thermal conductivity (k) decreased as the equilibrium moisture content decreased with a range of >1000–2250 J/kg°C and >0.05–0.11 W/m.K, respectively. The heat-utilization-factor (HUF) and coefficient-of-energy (COE) values show an average value of 0.79 and 0.21. Various glazing shows an average heat-gain-percentage (HGP) of 24.82 %. Drying efficiency of indirect solar dryers with single, double, and vacuum solar collectors, namely 83.6 %, 85.2 %, and 85.2 %, respectively. SEM-EDS analysis shows that the surface of the jelly candy is filled with sugar crystals and contains several elements (C,O,K,Fe).