Changes in the basis set superposition errors upon transitioning from conventional CCSD(T) to the CCSD(T)(F12) explicitly correlated method is studied using the example of a water dimer. A comparison of the compensation errors for CCSD(T) and CCSD(T)(F12) reveals a substantial reduction in the superposition error upon use of the latter. Numerical experiments with water dimers show it is possible theoretically predict an equilibrium distance between oxygen atoms that is similar to the experimental data (2.946 A), as is the predicted energy of dissociation of a dimer (5.4 ± 0.7 kcal/mol). It is found that the structural and energy parameters of hydrogen bonds in water dimers can be calculated precisely even with two-exponential correlation-consistent basis sets if we use the explicitly correlated approach and subsequently correct the basis set superposition error.