The aim of the paper is the numerical and experimental validation of a previously developed nonlinear one-dimensional model of inextensional, shear undeformable, thin-walled beam with an open cross-section. Nonlinear in-plane and out-of-plane warping and torsional elongation effects are included in the model. To better understand the role of these new contributions a beam with a section with one symmetry axis, undergoing moderately large flexural curvatures and large torsional curvature is taken into account. To obtain a section of a cantilever beam for which the torsional curvature is expected to prevail with respect to the flexural ones, a preliminary study is performed. The attention is focused on the response to static forces and on the stability of the equilibrium branches. Analytical results are compared with results of two different nonlinear finite element models and mainly with experimental results to confirm the validity of the analytical model. Interesting results are obtained for the critical values of the flexural–torsional instability loads.
Read full abstract