Simulating accurately the South Asian summer monsoon is crucial for food security of several South Asian countries yet challenging for global climate models (GCMs). The GCMs suffer from some systematic biases including dry bias in mean monsoon rainfall over the India subcontinent and excessive equatorial light rain between which the relationship was rarely discussed. Numerical experiments are conducted for one month during active monsoon with global quasi-uniform resolution of 60 km (U60 km) and 3 km (U3 km) separately. Evaluation with observations shows that U3 km reduces the dry bias over northern India and excessive light rain over the equatorial Indian Ocean (EIO) that are both prominent in U60 km. Excessive light rain in U60 km contributes critically to stronger rainfall and latent heating over the EIO. A Hadley-type anomalous circulation is thus induced, whose subsidence branch suppresses updrafts and reduces moisture transport into northern India, contributing to the dry bias. The findings highlight the importance of constraining excessive light rain for regional climate projection in GCMs.
Read full abstract