In this paper, we study a nonlinear interaction problem between a thermoelastic shell and a heat-conducting fluid. The shell is governed by linear thermoelasticity equations and encompasses a time-dependent domain which is filled with a fluid governed by the full Navier-Stokes-Fourier system. The fluid and the shell are fully coupled, giving rise to a novel nonlinear moving boundary fluid-structure interaction problem involving heat exchange. The existence of a weak solution is obtained by combining three approximation techniques – decoupling, penalization and domain extension. In particular, the penalization and the domain extension allow us to use the methods already developed for compressible fluids on moving domains. In such a way, the proof is more elegant and the analysis is drastically simplified. Let us stress that this is the first time the heat exchange in the context of fluid-structure interaction problems is considered.
Read full abstract