We formulate Friedmann’s equations as second-order linear differential equations. This is done using techniques related to the Schwarzian derivative that selects thebeta -times t_beta :=int ^t a^{-2beta }, where a is the scale factor. In particular, it turns out that Friedmann’s equations are equivalent to the eigenvalue problems O1/2Ψ=Λ12Ψ,O1a=-Λ3a,\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$\\begin{aligned} O_{1/2} \\Psi =\\frac{\\Lambda }{12}\\Psi , \\quad O_1 a =-\\frac{\\Lambda }{3} a , \\end{aligned}$$\\end{document}which is suggestive of a measurement problem. O_{beta }(rho ,p) are space-independent Klein–Gordon operators, depending only on energy density and pressure, and related to the Klein–Gordon Hamilton–Jacobi equations. The O_beta ’s are also independent of the spatial curvature, labeled by k, and absorbed in Ψ=aei2kη.\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$\\begin{aligned} \\Psi =\\sqrt{a} e^{\\frac{i}{2}\\sqrt{k}\\eta } . \\end{aligned}$$\\end{document}The above pair of equations is the unique possible linear form of Friedmann’s equations unless k=0, in which case there are infinitely many pairs of linear equations. Such a uniqueness just selects the conformal time eta equiv t_{1/2} among the t_beta ’s, which is the key to absorb the curvature term. An immediate consequence of the linear form is that it reveals a new symmetry of Friedmann’s equations in flat space.
Read full abstract