This paper is a continuation of Part I under the same title and is concerned mainly with the determination of the constitutive response coefficients, as well as some simple illustrative examples. First, a system of simplified constitutive equations for incompressible viscous turbulent flow is obtained from the more general system of equations in Part I through a judicial choice of retaining only those terms which appear to represent major features of the turbulent flow. Even for this simplified system of equations, the identification of some of the constitutive coefficients presents a formidable task; and this is especially true in the case of those coefficients that are associated with the presence of the additional independent variables of the theory due to the manifestation of the alignment of eddies (on the microscopic scale), turbulent fluctuation and eddy density. Because of this difficulty, the present effort for identification of the various constitutive coefficients must be regarded partly as tentative, pending future availability of suitable relevant experimental data and/or pertinent numerical simulation results. Keeping this background in mind, most of the relevant coefficients in the constitutive equations are determined, or the nature of their functional forms are estimated, through consideration of‘cartoon-like’ models on the microscopic level and these results are then used in conjunction with the macroscopic equations of motion to examine a number of simple solutions. These include the possibility of a flow possessing a constant uniform velocity gradient and solutions pertaining to decay of flow anisotropy and plane turbulent channel flows. The predicted theoretical calculations are in general accord with experimental observations. In addition, for plane channel flow, plots of variation along the width of the channel for the turbulent temperature and the macroscopic velocity compare favourably with corresponding known experimental results.
Read full abstract