Lepidopteran Type II sex pheromones are mainly composed of 6,9-dienes, 3,6,9-trienes, and their epoxy derivatives, which are biosynthesized from linoleic and linolenic acids by the species in some families of higher Lepidoptera. To investigate further structural modifications on this theme, we synthesized polyunsaturated hydrocarbons with a C(17)-C(21) chain, which included an extra double bond. Using the Wittig reaction, (Z,Z,E)-6,9,11-trienes and (Z,Z,Z,E)-3,6,9,11-tetraenes were synthesized from (E)-2-alkenals with appropriate carbon chains, and (Z,Z,Z)-1,3,6,9-tetraenes were synthesized from 3-hexyn-1,6-diol. The gas chromatography-mass spectrometry (GC-MS) analysis of each synthetic polyene, whose chemical structure was confirmed by (1)H NMR and (13)C NMR, revealed some characteristic fragment ions reflecting the positions of the double bonds, i.e., m/z 79, 110, 163, and M-85 of the 6,9,11-trienes, m/z 79, 108, and M-82 of the 3,6,9,11-tetraenes, and m/z 79, 91, 106, and M-54 of the 1,3,6,9-tetraenes. Because the determination of the unsaturated positions is difficult to accomplish by chemical derivatization with a limited amount of natural pheromones, these diagnostic ions found in authentic samples would help identify the hydrocarbons in a pheromone extract. Furthermore, we carried out field screening tests of these polyenes in forests in Japan, and documented the attraction of four geometrid species in Tokyo and one noctuid species in the Iriomote Islands.