In this study, the major objective was to investigate the mechanical and electrical properties, and strain sensibility of the carbon nanotube (CNT) filled epoxidized natural rubber (ENR) nanocomposite. The second filler, cellulose nanofibers (CNFs), at various proportions was incorporated into the CNT-filled ENR nanocomposites. The preparation of ENR nanocomposite was carried out using a latex mixing process. The CNT:CNF hybrid filler was pre-dispersed in deionized water before being added to the ENR latex. The ratios of CNTs to CNFs varied from 1:0 to 1:0.05, 1:0.5, 1:1, 1:1.25, and 1:1.5. Although the presence of CNFs enhanced the stiffness of the substance, its negative effect on the tensile strength was noted. From the evaluated electrical properties, the outcomes demonstrated that the presence of CNFs with suitable proportions can have a positive effect on the performance of the substance when used as a stain-sensitive substance. The electrical conductivity of the hybrid ENR nanocomposite initially increased with the increase of CNF proportion up to 0.5. Beyond this proportion, the conductivity declined gradually. Moreover, the CNT:CNF1:0.5 filled ENR nanocomposite had the highest recoverable piezoresistive property. From this finding, it can be inferred that the CNT:CNF1:0.5 filled ENR nanocomposite is suitable to be used as a strain sensor device.
Read full abstract