Abstract

ABSTRACT Conventionally, specialty natural rubber (SpNR) latex, namely, deproteinized natural rubber (DPNR) latex and epoxidized natural rubber (ENR) latex, are prepared from low ammonia latex (LATZ) causing high material cost. To address this issue, the objective of this study is to prepare SpNR latex directly from freshly tapped NR latex. In this work, DPNR latex is prepared via a heat enzymatic hydrolysis process, while ENR latex is prepared via in situ epoxidation chemical modification process. In addition, both DPNR and ENR latex were concentrated to 60% total solid content via ultrafiltration process using membrane separation technology. Physiochemical properties of DPNR, ENR, and LATZ latex were compared. Results show that the total solid content, dry rubber content, and alkalinity level of the latexes achieved the targeted value. This study also found that nitrogen content of DPNR latex, LATZ latex, and ENR latex were at 0.11%, 0.29%, and 0.25%, respectively, indicating successful deproteinization of the DPNR latex. On the other hand, the epoxidation level of ENR latex produced in this study was at 46.3%, which is slightly lower than the targeted level of 50%. Rheological studies found that ENR latex exhibits the highest viscosity, followed by DPNR and LATZ, but all show characteristic shear-thinning behavior. This study also found that LATZ and DPNR latex are more liquid-like in nature, while ENR latex behaves more like an elastic solid. Non-ionic surfactants play a major role in influencing flow and deformation behavior of the ENR and DPNR latex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.