Chemical crosslinking (XL) of non-covalent antigen-antibody complexes followed by mass spectrometric identification (MS) of inter-protein crosslinks can provide spatial constraints between relevant residues, which are valuable structural information associated with the molecular binding interface. To highlight the potential of XL/MS in the biopharmaceutical industry, we herein developed and validated an XL/MS workflow that employed a zero-length linker, 1,1′‑carbonyldiimidazole (CDI), and a widely used medium-length linker, disuccinimidyl sulfoxide (DSSO), for fast, accurate determination of antigen domains targeted by therapeutic antibodies. To avoid false identification, system suitability samples and negative samples were designed for all experiments, and all tandem mass spectra were manually examined. To validate the proposed XL/MS workflow, two complexes involving human epidermal growth factor receptor 2 Fc fusion protein (HER2Fc) with known crystal structures, including HER2Fc-pertuzumab and HER2Fc-trastuzumab, have been subjected to CDI and DSSO crosslinking. Crosslinks established by CDI and DSSO between HER2Fc and pertuzumab accurately revealed their interaction interface. CDI crosslinking contributes more than DSSO because of its short spacer arm and high reactivity towards hydroxyl groups, demonstrating its capacity in protein interaction analysis. The correct binding domain cannot be revealed solely based on DSSO in the HER2Fc-trastuzumab complex, because domain proximity revealed by this 7-atom spacer linker cannot be directly translated as binding interfaces. As the first successful XL/MS application in early-stage therapeutic antibody discovery, we analyzed the molecular binding interface between HER2Fc and H-mab, an innovant drug candidate whose paratopes have not been studied yet. We predict that H-mab probably targets HER2 Domain I. The proposed XL/MS workflow can serve as an accurate, fast, and low-cost method to study the interaction between antibodies and large multi-domain antigens. SignificanceThis article described a fast, low-consumption approach based on chemical crosslinking mass spectrometry (XL/MS) using two linkers for binding domain determination in multidomain antigen-antibody complexes. Our results highlighted the higher importance of zero-length crosslinks established by CDI than 7-atom DSSO crosslinks, as residue proximity revealed by zero-length crosslinks is closely related to epitope-paratope interaction surfaces. Furthermore, the higher reactivity of CDI towards hydroxyl groups broadens the ranges of possible crosslinks, despite the necessity of delicate operation in CDI crosslinking. We suggest that all established CDI and DSSO crosslinks should be comprehensively considered for correct binding domain analysis because predictions solely based on DSSO might be ambiguous. We have determined the binding interface in the HER2-H-mab using CDI and DSSO, which is the first successful application of XL/MS in real-world early-stage biopharmaceutical development.
Read full abstract