Carbonic anhydrase 9 (CA9) plays a vital role in lung cancer progression. The current study explored the effect of CA9 gene polymorphisms and the epidermal growth factor receptor (EGFR) mutations on the clinicopathological characters of lung adenocarcinoma. In this study, three loci of CA9 single nucleotide polymorphism (SNP) (rs2071676 A > G, rs3829078 A > G, and rs1048638 C > A) were genotyped using the TaqMan allelic discrimination method in 193 EGFR wild type individuals and 281 EGFR mutation subjects. After adjusting for age, gender, and cigarette smoking status in logistic regression, all three CA9 SNPs illustrated a non-significant difference for the distribution between the EGFR wild type group and EGFR mutation group. Nevertheless, a significantly lower rate of CA9 SNP rs2071676 AG (adjusted odds ratio (AOR): 0.40, 95% confidence interval (CI): 0.16–0.95, p = 0.039) and AG + GG (AOR: 0.43, 95% CI: 0.18–0.98, p = 0.046) were found in the male population with L858R EGFR mutation compared to men with EGFR wild type. In addition, the CA9 SNP rs2071676 AG + GG genotype were significantly correlated to the lower tumor stage of lung adenocarcinoma in the whole study population (p = 0.044) and EGFR wild type individuals (p = 0.033). For the male population, the presence of CA9 SNP rs2071676 AG + GG genotype was also correlated to a lower tumor stage (p = 0.037) and fewer lymph node invasion (p = 0.003) in those with EGFR wild type. In conclusion, the existence of CA9 SNP rs2071676 is associated with the rate of EGFR L858R mutation in males. Furthermore, the CA9 SNP rs2071676 is correlated to lower tumor stage and lower risk for developing lymph node metastasis in lung adenocarcinoma, mainly in the EGFR wild type.
Read full abstract