Although mast cells have been found in increased numbers in bronchial epithelium in asthma patients, the pathogenic role of the interaction of mast cells with bronchial epithelial cells in the development of local inflammation in asthma is not well understood.In this study, primary human bronchial epithelial cells and a human mast cell line (HMC-1) were cultured either together or separately in the presence or absence of various signaling molecule inhibitors or dexamethasone. Cytokine IL-6, and chemokines including CXCL1 and CXCL8 in cell culture supernatant were assayed by enzyme-linked immunosorbent assay (ELISA), and the activity of mitogen-activated protein kinases (MAPKs), or nuclear factor-κB (NF-κB) in co-culture system was analyzed by ELISA.Co-culture of bronchial epithelial cells and mast cells induced a significant elevation of IL-6, CXCL1 and CXCL8 in bronchial epithelial cells, and both IL-17A and IL-17F could further enhance the release of these inflammatory mediators from co-culture. The induction of IL-6, CXCL1 and CXCL8 upon the interaction of bronchial epithelial cells with mast cells was mediated by MAPKs and NF-κB signaling pathways. These data indicate that the interaction of mast cells with bronchial epithelial cells may represent a crucial mechanism of regulating local inflammatory response in allergic asthma.