Flexible epitaxial magnetic oxide nanostructures with different electric and magnetic characteristics have attracted intensive explorations because of the potential applications in compact flexible devices. However, either expensive equipment or complicated processing is often indispensable in the traditional fabrication technology. Besides, there still lacks the report on high-quality metallic or half-metallic oxide nanocolumn arrays integrated on flexible substrates, which is one of the most important part in the future all-oxide nanostructure-based flexible spintronics. Herein, we demonstrate a spontaneous formation method to fabricate the epitaxial La0.67Sr0.33MnO3 nanocolumn films on flexible mica substrates with an SrTiO3 buffer layer. The morphology and density of the nanoscale columns can be easily tuned by changing the film thickness, which in turn influences the magnetic properties of the film. Under different levels of bending, the films exhibit morphology-dependent performance during the ferromagnetic resonance measurements. This study provides a viable route of fabricating tunable nanostructures for flexible spintronic devices with optimized performances.