High-crystalline aluminum nitride (AlN) thin films are essential for device applications, and epitaxial growth is a promising approach to improve their crystalline quality. However, a high substrate temperature is usually required for the epitaxial growth, which is not compatible with the complementary metal-oxide-semiconductor (CMOS) process. Furthermore, it is very difficult to obtain epitaxial AlN thin films on the deposited metal layers that are sometimes necessary for the bottom electrodes. In this work, epitaxial AlN thin films were successfully prepared on a molybdenum (Mo) electrode/sapphire substrate using reactive sputtering at a low substrate temperature. The structural properties, including the out-of-plane and in-plane relationships between the AlN thin film and the substrate, were investigated using X-ray diffraction (XRD) 2θ-ω, rocking curve, and pole figure scans. Additional analyses using scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM) were also carried out. It was shown that highly c-axis-oriented AlN thin films were grown epitaxially on the Mo/sapphire substrate with an in-plane relationship of AlN [112¯0]//sapphire [101¯0]. This epitaxial growth was attributed to the highly ordered and oriented Mo electrode layer grown on the sapphire substrate. In contrast, the AlN deposition on the Mo/SiO2/Si substrate under the same conditions caused poorly oriented films with a polycrystalline structure. There coexisted two different low-crystalline phases of Mo (110) and Mo (211) in the Mo layer on the SiO2/Si substrate, which led to the high mosaicity and polycrystalline structure of the AlN thin films.
Read full abstract