Abstract

Thin (0001) epitaxial aluminum nitride (AlN) layers were grown on c-plane sapphire using high temperature hydride vapor phase epitaxy. The experimental set-up consists of a vertical cold-wall quartz reactor working at low pressure in which the reactions take place on a susceptor heated by induction. The reactants used are ammonia and aluminum chlorides in situ formed via hydrogen chloride reaction with high purity aluminum pellets. As-grown AlN layers have been characterized by scanning electron microscopy, atomic force microscopy, X-ray diffraction, transmission electron microscopy, photoluminescence and Raman spectroscopies. The influence of the V/III ratio in the gas phase, from 1.5 to 15, on growth rate, surface morphology, roughness and crystalline quality is investigated in order to increase the quality of thin epitaxial AlN layers grown at high temperature. Typical growth rates of around 0.45μm/h were obtained for such thin epitaxial AlN layers. The growth rate was unaffected by the V/III ratio. An optimum for roughness, crystalline quality and optical properties seems to exist at V/III=7.5. As a matter of fact, for a V/III ratio of 7.5, best root mean square roughness and crystalline quality — measured on 0002 symmetric reflection — as low as 6.9nm and 898arcsec were obtained, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.