Abstract

The next generation of all-solid-state batteries can feature battery safety that is unparalleled among conventional liquid batteries. The garnet-type solid-state electrolyte Li7La3Zr2O12 (LLZO), in particular, is widely studied because of its high Li-ion conductivity and stability in air. However, the poor interface-contact between Li and the electrolyte (garnet) severely limits the development of solid electrolytes. In this study, we synthesize cubic phase Li6.4La3Zr1.4Ta0.6O12 (LLZTO) using a secondary sintering method. In addition, a thin aluminum nitride (AlN) layer is introduced between the metal (Li) and the solid electrolyte. Theoretical calculations show that AlN has a high affinity for Li. Furthermore, it is shown that the AlN coating can effectively reduce the interface impedance between Li and the solid electrolyte and improve the lithium-ion transport. The assembled symmetric Li cells can operate stably for more than 3600 h, unlike the symmetric cells without AlN coating, which short-circuited after only a few cycles. The hybrid solid-state battery with a modified layer, which is assembled using LiFePO4 (LFP), still has a capacity of 120 mAh g−1 after 200 cycles, with a capacity retention rate of 98%. This shows that the introduction of an AlN interlayer is very helpful to obtain a stable Li/solid-electrolyte interface, which improves the cycling stability of the battery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call