Abstract. The Ross Sea record of the Miocene Climatic Optimum (MCO; ∼ 16.9–14.7 Ma) and the Middle Miocene Climate Transition (MMCT; ∼ 14.7–13.8 Ma) provides critical insights into Antarctic ocean–cryosphere interactions during a time of extreme warmth and subsequent cooling. Here we report on Lower to Middle Miocene foraminiferal assemblages from the International Ocean Discovery Program (IODP) Site U1521 on the outer shelf of the central Ross Sea to identify regional shifts in environmental and water mass conditions and trace continental shelf evolution. We identified seven benthic biofacies clusters, dominated by abundant Globocassidulina subglobosa (a proposed indicator of proto-Circumpolar Deep Water, pCDW), Uvigerina cf. U. fueguina (high productivity and enhanced bottom-water currents), Nonionella spp. (high productivity), or Melonis spp. (high productivity) using a Q-mode cluster analysis to develop preliminary regional paleoenvironmental interpretations. Four unique assemblages, including Globobulimina cf. G. auriculata (high productivity and low oxygen), are also identified. Unit IV (representing the early MCO event) is a short-lived (∼ 80 ka), progradational, clast-poor sandy diamictite, likely deposited during deglaciation; the upper part of Unit IV is transitional with overlying Unit III. Unit IV sediments contain the most persistently abundant and diverse foraminiferal assemblages recovered at U1521 because they are mud-rich and diatom-poor, despite very high sedimentation rates. The benthic assemblages shift between Globocassidulina and Uvigerina dominance, suggesting changes in the pCDW influence relative to productivity and/or current activity. We suggest the abundance of Uvigerina (a shelf-edge proxy) in Unit IV records the northward progradation of the Ross continental shelf at this location during the late Early to Middle Miocene. Unit III (MCO) was deposited in an open-marine setting, evident by the ice-rafted detritus or debris (IRD) clast-free, diatom-rich/diatom-bearing muds. The sporadic nature of foraminiferal abundances in Unit III is likely due to intervals of terrigenous mud alternating with more diatom-rich/diatom-bearing muds. As in Unit IV, the muddier lithologies (higher natural gamma ray (NGR) values) are more likely to preserve calcareous foraminifera, whereas the most diatom-rich sediments (lower NGR values) are more corrosive to carbonate. We interpret the muddier intervals as interglacials with incursions of pCDW, as indicated by increased Globocassidulina subglobosa, and sporadic occurrences of rare warmer-water planktic foraminifera. Collectively, these multiple incursions of warmer-water planktic foraminifera provide evidence for polar amplification in the Ross Sea during the MCO and MMCT. The diatom-rich muds are interpreted as glacials during the MCO with open-marine conditions and higher productivity. The dominance of Globobulimina in the upper part of Unit III corresponds with the carbon maximum of Carbon Maxima 2 (CM2) and low-oxygen conditions in the sediments at ∼ 16.1 Ma. Subsequent glaciation (including Mi2, Miocene Isotope event 2), marine-based ice sheet grounding, and erosion on the shallow shelf are recorded by the widespread Ross Sea Unconformity 4 (RSU4; ∼ 15.95–14.2 Ma) at Site U1521. Unit II (MMCT) likely represents sedimentation in the interval between the RSU4 and the Mi3 (Miocene Isotope event 3) glaciation at ∼ 13.9–13.8 Ma. The benthic biofacies composition of Unit II shows a further increase in neritic taxa, including Elphidium magellanicum and Epistominella vitrea, suggesting continued shoaling of the continental shelf, which facilitated the growth of marine-based ice sheets during the Middle Miocene. Our initial correlation between Site U1521 and the ANtarctic geological DRILLing Project (ANDRILL) site, AND-2A, yields similar environmental interpretations, including peak warm events 3 and 4 during the MCO, supported by the foraminifera and unit lithologies. Suspected glacial intervals during the MCO, including Mi2 at the top of Unit III, correlate well with the reconstructed deep-sea estimates of ice volume changes (seawater δ18Osw record) from the Ocean Drilling Program (ODP) Site 1171 on the South Tasman Rise.