Mesial temporal lobe epilepsy (MTLE), the most common form of focal epilepsy in adults, is often refractory to medication and associated with hippocampal sclerosis. Deep brain stimulation represents an alternative treatment option for drug-resistant patients who are ineligible for resective brain surgery. In clinical practice, closed-loop stimulation at high frequencies is applied to interrupt ongoing seizures, yet has (i) a high incidence of false detections; (ii) the drawback of delayed seizure-suppressive intervention; and (iii) limited success in sclerotic tissue. As an alternative, low-frequency stimulation (LFS) has been explored recently in patients with focal epilepsies. In preclinical epilepsy models, hippocampal LFS successfully prevented seizures when applied continuously. Since it would be advantageous to reduce the stimulation load, we developed a protocol for on-demand LFS. Given the importance of the hippocampus for navigation and memory, we investigated potential consequences of LFS on hippocampal function. To this end, we used the intrahippocampal kainate mouse model, which recapitulates the key features of MTLE, including spontaneous seizure activity and hippocampal sclerosis. Specifically, our online detection algorithm monitored epileptiform activity in hippocampal local field potential recordings and identified short epileptiform bursts preceding focal seizure clusters, triggering hippocampal LFS to stabilize the network state. To probe behavioural performance, we tested the acute influence of LFS on anxiety-like behaviour in the light-dark box test, spatial and non-spatial memory in the object location memory and novel object recognition test, as well as spatial navigation and long-term memory in the Barnes maze. On-demand LFS was almost as effective as continuous LFS in preventing focal seizure clusters but with a significantly lower stimulation load. When we compared the behavioural performance of chronically epileptic mice to healthy controls, we found that both groups were equally mobile, but epileptic mice displayed an increased anxiety level, altered spatial learning strategy and impaired memory performance. Most importantly, with the application of hippocampal LFS before behavioural training and test sessions, we could rule out deleterious effects on cognition and even show an alleviation of deficits in long-term memory recall in chronically epileptic mice. Taken together, our findings may provide a promising alternative to current therapies, overcoming some of their major limitations, and inspire further investigation of LFS for seizure control in focal epilepsy syndromes.