Abstract Distal alteration related to porphyry Cu mineralization is typically characterized by an abundance of green minerals, such as epidote, tremolite, and chlorite, within the propylitic and sodic-calcic alteration zones and extends far outside (>1 km) the mineralized zone(s). Glacial erosion and dispersal derived from rocks affected by propylitic and sodic-calcic alteration have resulted in the development of extensive dispersal trains of epidote in till (glacial sediment) that can reach 8 to 330 km2 as observed at four porphyry Cu study sites in the Quesnel terrane of south-central British Columbia: Highland Valley Copper, Gibraltar, Mount Polley, and Woodjam deposits. At each of these sites, epidote is more abundant in heavy mineral concentrates of till collected directly over and down-ice from mineralization and associated alteration. Epidote grains in till with >0.6 ppm Sb and >8 ppm As (as determined by laser ablation-inductively coupled plasma-mass spectrometry) are attributed to a porphyry alteration provenance. There is a greater abundance of epidote grains with high concentrations of trace elements (>12 ppm Cu, >2,700 ppm Mn, >7 ppm Zn, and >37 ppm Pb) in each porphyry district compared to background regions. This trace element signature recorded in till epidote grains is heterogeneously distributed in these districts and is interpreted to reflect varying degrees of metal enrichment from a porphyry fluid source. Tracing the source of the epidote in the till (i.e., geochemically tying it to porphyry-related propylitic and/or sodic-calcic alteration), coupled with porphyry vectoring tools in bedrock, will aid in the detection of concealed porphyry Cu mineralization in glaciated terrains.
Read full abstract