The objective was to investigate the difference in penetration enhancing effect of R-carvone, S-carvone and RS-carvone on the in vitro transdermal drug permeation. In vitro permeation studies were carried out across neonatal rat epidermis from 2%w/v HPMC (hydroxypropyl methylcellulose) gel containing 4%w/v of nicorandil (a model drug) and a selected concentration (12%w/v) of either R-carvone, S-carvone or RS-carvone against a control. The stratum corneum (SC) of rats was treated with vehicle (70%v/v ethanol-water) or ethanolic solutions of 12%w/v R-carvone, S-carvone or RS-carvone. The enhancement ratio (ER) of R-carvone, S-carvone and RS-carvone when compared to control was about 37.1, 31.2 and 29.9, respectively indicating enantioselective penetration enhancing effect of carvone enantiomers. Furthermore, there was a significant decrease in the lag time required to produce a steady-state flux of nicorandil with S-carvone when compared to R-carvone and RS-carvone. DSC and FT-IR studies indicate that the investigated enantiomers of carvone exhibit a difference in their ability to affect the cellular organization of SC lipids and proteins thereby showing enantioselective transdermal drug permeation. It was concluded that R-carvone exhibited a higher penetration enhancing activity on transdermal permeation of nicorandil when compared to its S-isomer or racemic mixture.