Cenozoic crustal extension in east central Idaho began about 50 Ma and continues at present. Three distinct episodes characterize one of the longest intervals of Cenozoic extension yet documented in the North America Cordillera. Crosscutting relationships between NE striking normal faults and volcanic rocks, regional dike trends, and slickenline data indicate NW‐SE extension during peak Eocene volcanism about 49–48 Ma (episode 1). NE striking normal faults, with at most a few kilometers of offset, formed in an intraarc setting during rapid NE subduction of oceanic plates under the Pacific Northwest. North to NNW striking and west dipping normal faults, with offsets up to 10–15 km, formed during a younger middle Eocene to Oligocene basin‐forming event (episode 2). This newly documented episode was the most important extensional event in east central Idaho and began during the waning phases of Challis volcanism. WSW‐ENE to SW‐NE extension during episode 2 was nearly perpendicular to the extension direction during episode 1 and perpendicular to the grain of the Idaho‐Montana fold and thrust belt. The flip in extension direction between episode 1 and episode 2 is tightly constrained by 40Ar/39Ar age determinations to have taken place at the end of Eocene Challis magmatism about 46–48 Ma. I infer that plate boundary forces controlled the geometry of normal faults and dikes during episode 1, whereas internal stresses within previously thickened crust drove major SW to WSW directed extension during episode 2. A drop in convergence rates between the North American and Farallon plates between 59 Ma and 42 Ma (Stock and Molnar, 1988) may coincide with the onset of gravitational spreading during episode 2 and may also explain the abrupt end of Eocene magmatism in the Pacific Northwest. Miocene and younger SW dipping Basin and Range faults (episode 3) extended the region in a NE‐SW direction. Although faults formed during episode 2 and episode 3 are not parallel, slickenlines indicate only small changes in slip vector trends, suggesting little rotation of the extension direction in east central Idaho since 46 Ma.
Read full abstract