In this study, we aimed to evaluate the economic, environmental, and social viability of the enzymatic hydrolysis process for food waste valorization by applying cost-benefit analysi (CBA). Our research was based on the investigation of three scenarios/alternatives for the final product of the enzymatic hydrolysis process and the production of bioethanol, bioactive peptides, and organic acids. Key economic indicators, such as cost/benefit ratios, net present value (NPV), and internal rate of return (IRR), were used to evaluate financial performance. At the end of the CBA, a sensitivity analysis was conducted to highlight the performance of each scenario under varying conditions, including fluctuating costs, benefits, and discount rates. These results indicate that enzymatic hydrolysis offers a significant opportunity for reducing food waste and its environmental impacts and promotes sustainability. Bioactive peptide production was found to be the most environmentally viable option, offering the highest cost-benefit efficiency. In both the optimistic and pessimistic scenarios of the sensitivity analysis, the results revealed that bioactive peptide production is economically viable, while the other alternatives, such as bioethanol and organic acid production, are more sensitive to economic and operational changes. This study revealed that enzymatic hydrolysis, as evaluated through CBA, offers a viable and impactful method for food waste management. It reduces environmental impacts, enhances sustainability, and aligns with the principles of a circular economy. The adoption of such innovative waste management strategies is considered essential for building a more sustainable and resource-efficient food system.
Read full abstract