Bioproduction of chiral amines is limited by low transaminase (TA) activity on nonnatural substrates, leading to the need for protein engineering. To address the challenge of quickly and precisely identifying the engineering targets, a strategy was proposed based on analyzing the mode changes in the high-energy intermediate state (H-state) of the substrate-enzyme complex during catalysis. By substituting the residues with minimal structural changes in catalytically active mode (A-mode) and distance-free mode (F-mode) of the H-state complex with more conserved ones to stabilize it, a TA mutant M5(T295C/L387A/V436A) with 121.9-fold higher activity for synthesizing the (S)-Rivastigmine precursor (S)-1-(3-methoxyphenyl)ethylamine was created. The applicability of this strategy was also validated by engineering another TA for 1.52-fold higher activity and >99% selectivity toward(R)-3-amino-1-butanol biopreparation. The much higher stereoselectivity of the mutant compared with the wild type (28.3%) demonstrated that this strategy is not only advantageous in engineering enzyme activity but also applicable for modulating stereoselectivity.
Read full abstract