The development of sustainable synthesis route to produce functional and bioactive polymer colloids has attracted much attention. Most strategies are based on the polymerization of monomers or crosslinking of prepolymers by enzyme- or cell-mediated reactions or specific catalysts in confined emulsions. Herein, a facile solution spray method was developed for spontaneous synthesis of microgels without use of confined emulsion, additional initiators/catalysts and deoxygenation, which addresses the challenges in traditional microgel synthesis. The polarization of air-water interface of the microdroplets can spontaneously split hydroxide ions in water to produce hydroxyl radicals, thereby initiating polymerization and crosslinking in air environment. This synthesis strategy is applicable to a variety of monomers and enables the fabrication of microgels with tunable chemical structures and variable sizes. Importantly, the synthesis route also allows for the preparation of enzyme- or drug-loaded microgels via the in-situ encapsulation, which also display high enzymatic activity and stimuli-triggered drug release. Therefore, this work not only is of great significance to macromolecular science and microdroplet chemistry, but also may bring new insights into cellular biochemistry and even prebiotic chemistry due to the prevalence of microdroplets in the environment.
Read full abstract