Phenazine-1-carboxylic acid (PCA) is a new type of agrochemical used to prevent plant diseases, but its effects on aquatic organisms are unclear. To comprehensively assess the impacts of PCA for aquatic organisms and its associated environmental risks, this study investigated, taking zebrafish as the research object, the toxicological mechanism of PCA by means of optical microscopy, hematoxylin and eosin (HE) staining, ultrastructural observation, physiological and biochemical testing, transcriptome sequencing, metabolome analysis, fluorescence quantitative PCR and molecular simulation. The results indicated that PCA was detrimental to zebrafish embryos, larvae and adults, with LC50 values at 96 h of 3.9093 mg/L, 8.5075 mg/L, and 13.6388 mg/L, respectively. PCA caused abnormal spontaneous movement, slowed the heart rate, delayed hatching, shortened the body length, slowed growth, and caused malformations. PCA mainly affected the brain, liver, heart, and ovaries. PCA distorted cell morphology, damaged mitochondrial membranes, disintegrated mitochondrial ridges, and dissociated nuclear membranes. PCA inhibited the enzyme activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX), decreased the malondialdehyde (MDA) content and disrupted antioxidant effects. The results of omics studies confirmed that PCA interfered with the transcriptional and metabolic network of zebrafish, downregulating most genes and metabolites. PCA mainly affected functions related to mitochondrial steroids, lipids, sterols, oxidoreductase activity and pathways involving cofactors, steroids, porphyrin, cytochromes, which specifically bound to targets such as panx3, agmat, and ace2. PCA was moderately toxic to zebrafish, and its usage should be strictly controlled to reduce toxic effects on aquatic organisms. The results of this study provide a new insights for ecotoxicology research.
Read full abstract