Tick-transmitted bacterial pathogens thrive in enzootic infection cycles, colonizing disparate vertebrate and arthropod tissues, often establishing persistent infections. Therefore, the evolution of robust immune evasion strategies is central to their successful persistence or transmission between hosts. To survive in nature, these pathogens must counteract a broad range of microbicidal host responses that can be localized, tissue-specific, or systemic, including a mix of these responses at the host-vector interface. Herein, we review microbial immune evasion strategies focusing on Lyme disease spirochetes and rickettsial or tularemia agents as models for extracellular and intracellular tick-borne pathogens, respectively. A better understanding of these adaptive strategies could enrich our knowledge of the infection biology of relevant tick-borne diseases, contributing to the development of future preventions.
Read full abstract