In recent decades, the paradigm of water quality management has shifted from complete prohibition of pollutant discharge (i.e. zero tolerance) to permitting limited discharge of pollutants to receiving water bodies based on the results of a risk-based assessment approach. This approach assumes that the aquatic ecosystem is able to cope with certain levels of pollutants without harming aquatic life and the health of local communities who rely on the water body for food, drinking water and enjoyment. A risk-based approach also assumes that safe levels can be defined for pollutants that do not cause unacceptable disruptions of the structure and function of the aquatic ecosystem. This approach acknowledges the presence of uncertainty associated with the current understanding of substance-specific ecotoxicity, the behaviour of chemical mixtures in the environment, ecology of the receiving waters and the ability to measure chemical contaminants in effluents and receiving waters accurately. Furthermore, a risk-based approach acknowledges that the most serious water pollutants in terms of human health worldwide may not be man-made chemicals, but rather the pathogenic organisms originating from untreated or improperly treated human wastes. In developed countries, pollutioncontrol technologies have reduced or eliminated most of sources of pathogens in inland surface waters, thereby affording attention on other contaminants in water such as industrial chemicals, metals, and agricultural chemicals. The situation, however, is quite different in less-developed countries. In 2012, it was estimated that 37 % of the world’s population still lack adequate sanitation while 11 % of the global population could not gain access to clean drinking water (WHO 2012). From this perspective, the use of a riskbased approach that is able to focus attention on the largest water quality challenges and can confidently direct scarce financial resources to actions that will affect the largest results for protection of clean drinking water is of paramount importance. Scientists and environmental authorities are confronted with the realities facing less-developed countries, the nature of current scientific uncertainties and recognition that zero tolerance of water pollutants will likely have unacceptable economic consequences for societies striving to improve quality of life. It is self-evident, therefore, that the derivation of risk-based environmental quality guidelines, threshold values, limits, objectives and benchmarks by national regulatory authorities is gaining widespread acceptance as an appropriate foundation for national and international water quality management.