PDF HTML阅读 XML下载 导出引用 引用提醒 北京市住宅建筑生命周期碳足迹 DOI: 10.5846/stxb201504070695 作者: 作者单位: 中国科学院生态环境研究中心,中国科学院生态环境研究中心 作者简介: 通讯作者: 中图分类号: 基金项目: 中国科学院战略性先导科技专项(XDA05140200) Life cycle carbon footprint of residential buildings in Beijing Author: Affiliation: Research center of Eco-Environmental Sciences, Chinese Academy of Sciences,Research center of Eco-Environmental Sciences, Chinese Academy of Sciences Fund Project: 摘要 | 图/表 | 访问统计 | 参考文献 | 相似文献 | 引证文献 | 资源附件 | 文章评论 摘要:从生命周期角度看,建筑碳足迹与能源和建材生产系统具有密切关系。随着技术的进步和节能政策的推进,中国能源的生产和使用,以及建材生产过程中的环境排放都随着时间在持续降低,这将间接地影响到建筑的环境表现。依据1990-2010年期间每5a的中国能源与建材生命周期清单数据,对北京市20年间住宅建筑系统开展生命周期评价和碳足迹核算,以揭示北京市住宅建筑系统的环境负荷变化特征。结果表明,北京市住宅建筑生命周期碳足迹随时间推移呈现降低趋势,主要来自能源系统和建材生产系统的碳减排贡献。不同结构建筑的碳足迹尽管有差异,但也呈现了相似的下降趋势。从生命周期阶段看,建筑碳足迹主要体现在建筑使用阶段和建材生产阶段。尽管建筑使用阶段的节能对于降低建筑生命周期碳足迹具有重要贡献,但节能在经济成本及环境成本方面而言是有限度的。在可持续的环境政策管理制定中,应从生命周期角度,统筹考虑协调各行业减碳的协调发展。论文同时也验证了在生命周期评价中考虑时间变量将有助于更好地利用生命周期评价结果支持环境可持续管理。结论对于城市规划的政策制定、量化环境表现是有益的。 Abstract:The carbon footprint of buildings relates to the energy system and building material production system from the perspective of life cycle. With the advancement of innovations in technology and energy conservation policies, emissions related to energy production and use as well as the production of building materials have been reducing in China. Consequently, this will influence the environmental performance of buildings indirectly. In this study, the life cycle carbon footprint of residential buildings in Beijing was calculated for the past 20 years, based on life cycle inventory databases in the context of energy and building materials, to determine the change in environmental performance of residential buildings. The results show that the carbon footprint in Beijing exhibited a decreasing trend, mainly as a result of carbon reduction in the energy mix and improvements in the building material production system. The carbon footprints of different structures also exhibited decreasing trends, although they varied in numbers. Considering life cycle stages, the use phase of buildings dominated the carbon footprint profile, which is mainly attributed to energy use. Although energy saving in the use phase was strongly correlated to the reduction of the carbon footprint of buildings, it had a limit in context of both economic cost and environmental cost. The coordination of various industrial sectors, such as energy production and material production industries should be paid sufficient attention while making policies for carbon reduction. Furthermore, as shown by the results, it is necessary to integrate the time parameter in life cycle assessment more efficient sustainable environmental management. The conclusions drawn from this study will be helpful for measuring the environmental performance in the policymaking of urban planning. 参考文献 相似文献 引证文献
Read full abstract