Advancements in light detection and ranging (LiDAR) technology have significantly improved robotics and automated navigation. However, the high cost of traditional LiDAR sensors restricts their use in small-scale robotic projects. This paper details the development of a low-cost LiDAR prototype for small mobile robots, using time-of-flight (ToF) sensors as a cost-effective alternative. Integrated with an ESP32 microcontroller for real-time data processing and Wi-Fi connectivity, the prototype facilitates accurate distance measurement and environmental mapping, crucial for autonomous navigation. Our approach included hardware design and assembly, followed by programming the ToF sensors and ESP32 for data collection and actuation. Experiments validated the accuracy of the ToF sensors under static, dynamic, and varied lighting conditions. Results show that our low-cost system achieves accuracy and reliability comparable to more expensive options, with an average mapping error within acceptable limits for practical use. This work offers a blueprint for affordable LiDAR systems, expanding access to technology for research and education, and demonstrating the viability of ToF sensors in economical robotic navigation and mapping solutions.
Read full abstract