AbstractNatural forests are crucial for climate change mitigation and adaptation, but deforestation and degradation challenges highly reduce their value. This study evaluates the potential of natural forest carbon stock and the influence of management interventions on enhancing forest carbon storage capacity. Based on forest area cover, a study was conducted in nine purposely selected forest patches across various forest ecosystems. Data on diameter, height, and environmental variables from various forest management approaches were collected and analyzed with R Ver. 4.1. The findings revealed a substantial difference (p .029) in carbon stock between environmental variables and management interventions. The findings revealed a strong connection between environmental variables and the overall pool of carbon stock within forest patches (p .029). Carbon stocks were highest in the Moist‐montane forest ecosystem (778.25 ton/ha), moderate slope (1019.5 ton/ha), lower elevation (614.50 ton/ha), southwest‐facing (800.1 ton/ha) and area exclosures (993.2 ton/ha). Accordingly, natural forests, particularly unmanaged parts, are sensitive to anthropogenic stresses, decreasing their ability to efficiently store carbon. As a result, the study highlighted the importance of sustainable forest management, particularly area exclosures and participatory forest management, in increasing forest carbon storage potential.
Read full abstract