The main purpose of this study was to create a prototype of an unmanned aerial system equipped with intelligent hardware and software technologies necessary for surveillance and monitoring the health and growth of crops from orchards with vines and fruit trees. Using low-cost sensors that accurately measure ultraviolet solar radiation was an important objective. The device, which needed to be attached to the commercial DJI Mini 4 Pro drone, had to be small, portable, and have low energy consumption. For this purpose, the widely used Vishay VEML6075 digital optical sensor was selected and implemented in a prototype, alongside a Raspberry Pi Zero 2 W minicomputer. To collect data from these sensors, a program written in Python was used, containing specific blocks for data acquisition from each sensor, to facilitate the monitoring of ultraviolet (UV) radiation, or battery current. By analyzing the data obtained from the sensors, several important conclusions were drawn that may provide valuable pathways for the further development of mobile or modular equipment. Furthermore, the plantation state analysis results with proposed models in the geographic information system (GIS) environment are also presented. The visualization of maps indicating variations in vegetation conditions led to identifying problems such as hydric stress.