Equivariant Ehrhart theory generalizes the study of lattice point enumeration to also account for the symmetries of a polytope under a linear group action. We present a catalogue of techniques with applications in this field, including zonotopal decompositions, symmetric triangulations, combinatorial interpretation of the h∗\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$h^*$$\\end{document}-polynomial, and certificates for the (non)existence of invariant nondegenerate hypersurfaces. We apply these methods to several families of examples including hypersimplices, orbit polytopes, and graphic zonotopes, expanding the library of polytopes for which their equivariant Ehrhart theory is known.
Read full abstract