Research focusing solely on the carrying capacity of a single aspect of water resources, water environment, or water ecology is no longer sufficient to support the sustainable development and management of basin water systems. The study of basin carrying capacity should expand towards a comprehensive and holistic direction. Therefore, this study constructed an evaluation index system for carrying capacity based on water resources, water environment, and water ecology (“Three Waters”). Utilizing the entropy weight-TOPSIS method, System Comprehensive Index Evaluation, and ArcGIS tools, the comprehensive evaluation index of the “Three Waters” System Carrying Capacity (TWSCC) in the Yellow River Basin (YRB) from 2005 to 2020 was calculated. The evaluation index analyzed the spatiotemporal variation characteristics of subsystem carrying capacity and performed early warning identification and analysis of TWSCC. Four differentiated developmental pathways were designed based on the current status of basin carrying capacity. Leveraging System Dynamics (SD) modeling, the dynamic simulation, and emulation of carrying capacity trends in the YRB from 2020 to 2035 were conducted. The research findings indicate that from 2005 to 2020, the TWSCC levels across the nine provinces in the YRB consistently exhibited varying degrees of overload. The alert levels mostly remained in “Heavy warning” or “Medium warning” states. By 2035, TWSCC under the four development paths improved from 2020 levels, with the Green Environmental Protection-Oriented scheme reaching a safe carrying capacity. In summary, this paper offers theoretical and methodological support for developing basin-carrying capacity and the integrated governance of “Three Waters.”
Read full abstract