In the context of mines, roof-caving incidents constitute the most common and expensive accidents. To enhance the management and prevention of roof-caving accidents, it is imperative to investigate the factors that contribute to such incidents and comprehend the intricate causal relationships among them. This study aims to classify the causes of these accidents into three categories: basic factors, controllable factors, and sudden factors, based on the mechanism of roof caving. The categorization is primarily determined by two indicators: intervisibility and variability. Furthermore, the study delves into analyzing the mutual influence relationships among these factors and proposes the BCX theory (Basic-Controllable-Sudden causing theory) for roof caving. Subsequently, based on this theory, an index system called BCX is established for roof caving, and the DEMATEL method is employed to analyze the factors within this index system. To attain more accurate results, this study utilizes interval trapezoidal type-2 fuzzy number scale optimization and Tsallis relative entropy to address the limitations of the DEMATEL method. By comparing the outcomes of the traditional and optimal DEMATEL methods, it is observed that the optimal method exhibits superior applicability in the BCX index system of roof caving, with results that align closely with the actual scenario. Therefore, the optimal DEMATEL method’s analysis of centrality, importance, and chain relationships between the factors within the BCX index system will offer valuable guidance for preventing roof-caving accidents in mining operations.
Read full abstract