A dry, low-NOx (DLN) combustor for a heavy-duty gas turbine using lean premixed technology was studied. A high-fidelity test model was built for the experimental study using particle image velocimetry (PIV). The non-reacting flow in the DLN combustion chamber was investigated experimentally and numerically. The numerical results are in good agreement with the experimental data. The results show that recirculation zones were formed downstream of each swirl nozzle and that the flow pattern in each section was self-similar under different working conditions. For two adjacent swirl nozzles with opposite swirling directions, the entrainment phenomenon was present between their two flows. The two flows gradually mixed with each other and obtained a higher speed. If the two adjacent swirl nozzles had the same swirling direction, then the mixing of the two flows out of the nozzles was not present, resulting in two separate downstream recirculation zones. The interaction of swirling flows out of different nozzles can enhance the turbulent fluctuation inside the combustion chamber. Based on the analysis of the recirculation zones and turbulent kinetic energy (TKE) distribution downstream of each nozzle, it can be found that nozzle coupling results in stronger recirculation and turbulent mixing downstream counterclockwise surrounding nozzles.