We used fingerprinting and cloning-sequencing to study the spatiotemporal dynamics and diversity of Planctomycetes in two perialpine lakes with contrasting environmental conditions. Planctomycetes, which are less-abundant bacteria in freshwater ecosystems, appeared to be structured in the same way as the entire bacterial community in these ecosystems. They were more diversified and displayed fewer temporal variations in the hypolimnia than in the epilimnia. Like the more-abundant bacterial groups in aquatic systems, Planctomycetes communities seem to be composed of a very small number of abundant and widespread operational taxonomic units (OTUs) and a large number of OTUs that are present at low abundance. This indicates that the concept of "abundant or core" and "rare" bacterial phylotypes could also be applied to less-abundant freshwater bacterial phyla. The richness and diversity of Planctomycetes were mainly driven by pH and were similar in both of the lakes studied, whereas the composition of the Planctomycetes community seemed to be determined by a combination of factors including temperature, pH, and nutrients. The relative abundances of the dominant OTUs varied over time and were differently associated with abiotic factors. Our findings demonstrate that less-abundant bacterial phyla, such as Planctomycetes, can display strong spatial and seasonal variations linked to environmental conditions and suggest that their functional role in the lakes studied might be attributable mainly to a small number of phylotypes and vary over space and time in the water column.
Read full abstract