AbstractThe glass industry is a significant source of greenhouse gas emissions due to its energy consumption profile and the use of fossil fuels in the manufacturing process. Most of the energy to produce glass is consumed in the process of treating raw materials to elevated temperatures, usually above 1500°C. Glass manufacturing also generates significant environmental impacts, such as greenhouse gas emissions, air pollution, water consumption, and waste generation. Therefore, improving the sustainability of glass manufacturing is a significant challenge for the industry and society. There are ways to reduce the energy consumption and emissions of glass melting, such as recycling glass, using oxy‐fuel burners, improving furnace insulation and design, and adopting electric melting technologies. These methods can help save energy, lower costs, and enhance the sustainability and environmental footprint of the glass industry. However, the industry faces challenges and barriers, such as technical feasibility, economic viability, capital investment, and market acceptance. More research and development must be invested to improve the energy efficiency and environmental performance of glass melting. The objective of this paper is to provide an overview of the growth glass industry has made over the past 30 years and the remaining challenges for sustainable glass manufacturing with a focus on the fiberglass segment. Sharing of procedural methods, technical approaches, and results can help enable the global glass industry in our future sustainability challenges. The fiberglass segment included a broad technical view including glass chemistry development, product development, new industry codes and standards, melting development, computational fluid dynamic modeling, life cycle assessments, and sustainability goals linked to capital planning. The net result delivered a significant reduction in environmental emissions at the global enterprise scale. The implemented changes have taken decades, significant investments, and resources to plan and develop. Practices reviewed and implemented can help drive collaboration and commonality within the glass industry to achieve sustainability goals. Action is needed now if the glass industry is to meet global government demands of reducing carbon emissions by 55% by 2030 and zero carbon emissions by 2050 in alignment with the Paris Agreement on decarbonization.
Read full abstract