BackgroundThe upsurge of diarrheagenic E. coli pathotypes carrying extended-spectrum beta-lactamases (ESBLs)/plasmid-mediated AmpC β-lactamase (pAmpC) among animals constitutes an emerging threat for humans and animals. This study investigated the burden of ESBL-/pAmpC-producing diarrheagenic E. coli among diarrheic foals and its potential public health implications. Rectal swabs were collected from 80 diarrheic foals. These swabs were processed to isolate and identify ESBL/pAmpC-producing E. coli using a selective culture medium, biochemical tests, phenotypic identification, and molecular identification of ESBL- and pAmpC-encoding genes. Moreover, all ESBL-/pAmpC-producing E. coli isolates were examined for different virulence genes related to diarrheagenic E. coli pathotypes.ResultsOut of 80 examined foals, 26 (32.5%) were confirmed as ESBL-/pAmpC-producing E. coli, of which 14 (17.5%) animals carried only ESBL-producing E. coli, whereas 12 (15%) animals possessed ESBL-pAmpC-producing E. coli. The only detected diarrheagenic pathotype was enterotoxigenic, encoded by the heat-stable enterotoxin gene (ST) with a prevalence rate of 80.8% (21/26). The ST gene was further characterized where STa, STb, and STa + STb were found in one, four, and 16 strains, respectively. Moreover, all enterotoxigenic E. coli (ETEC) isolates exhibited a multidrug-resistance pattern. The phylogenetic analysis of 3 obtained partial STb sequences revealed high genetic relatedness to ETEC isolates retrieved from humans, conferring such sequences' public health significance.ConclusionsThese findings highlight that diarrheic foals could serve as a potential reservoir for multidrug-resistant ESBL-/pAmpC-producing enterotoxigenic E. coli.