Lectin affinity chromatography is one of powerful tools for the study of protein glycosylation. Different lectin proteins can recognize different structures of monosaccharides or oligosaccharide units, allowing for the selective separation of glycopeptides or glycoproteins containing different polysaccharide structures. However, the N-glycans were only partially captured by most of common lectins, reducing the coverage rate of identifying N-glycoconjugates. Recently, it has been reported that the engineering variant of glycan binding protein Fbs1 has a high affinity for innermost Man3GlcNAc2 structure and is able to bind diverse types of N-glycans, which can be suitable for the analysis of protein N-glycosylation. However, efficient immobilization of protein to separation matrix is particularly challenging as it requires the functionality and integrity of the protein to be preserved. Herein, we describe a simple and robust strategy for oriental covalent immobilization of proteins on magnetic nanoparticles by N-terminal selective labeling techniques. We inserted the enterokinase cleavage site to produce the specific N- terminal glycine of protein. Under physiological conditions, the protein was immobilized on the surface of the MNPs by this glycine tag, and the enrichment process could be completed within 30 min. A whole enrichment and purification of glycan and glycopeptides were completed and analyzed by MALDI TOF-MS. The functional materials achieved stable enrichment of glycan structure in different enzyme digestion systems or complex samples, showing excellent anti-interference and applicability.