Enteroaggregative Escherichia coli (EAEC) has been identified as a new enteropathogen that causes acute and chronic diarrhea in children and travelers. One defining aspect of EAEC-pathogenesis is the induction of an inflammatory response in intestinal epithelium. In this study, we have found that EAEC-induced EGFR activation in human small intestinal and colonic epithelial was attenuated in the presence of a specific inhibitor of EGFR (Tyrphostin AG1478). Further, the aggregative stacked-brick type of adherence of this organism to both the cell lines and this pathogen-induced cytoskeletal rearrangement of these cells was also reduced in the presence of Tyrphostin AG1478. Moreover, EAEC-induced activation of downstream effectors (ERK-1/2, PI3K and Akt) of EGFR mediated cell signaling pathways were found to be suppressed in the presence of EGFR inhibitor. A decrease in IL-8 response in EAEC infected both the cell types were also noted in the presence of specific inhibitors of these downstream effectors, transcription factors and Tyrphostin AG1478. We propose that EAEC-induced activation of EGFR is quintessential for stacked-brick adherence of EAEC to human intestinal epithelial cells, their cytoskeletal rearrangements and stimulation of ERK-1/2 and PI3K/Akt mediated signal transduction pathways, resulting in the activation of NF-κB, AP-1, STAT-3 and finally IL-8 secretion by these cells.