This research paper demonstrates an application of the Black Widow Optimization (BWO) approach to address the issue of load-frequency control (LFC) in networked power systems. BWO is an innovative metaheuristic method that quickly suggests technique is initially evaluated on a non-reheat thermal-thermal (NRTT) power system spanning two areas of interconnection, and then it is applied to two different actual power systems: (a) a two-area thermal-thermal considering Generation Rate Constraint (GRC); and (b) a two-area having thermal, hydro, wind, solar, and gas systems. The BWO method uses two fitness functions based on integral time multiplied absolute error (ITAE) and integral square error (ISE) to optimize controller gains. The suggested BWO algorithm's performance has been compared to that of existing meta-heuristic optimization methods, such as grey wolf optimization (GWO), comprehensive learning particle swarm optimization (CLPSO), and an ensemble of parameters in differential evolution (EPSDE). The simulation results show that BWO's tuning skills are better than other population-based planning methods like CLPSO, EPSDE, and GWO. The ITAE value is enhanced by 33.28% (GWO), 40.28% (EPSDE), and 43.27% (CLPSO) when the BWO algorithm is used in conjunction with the PID Controller for thermal system.
Read full abstract