Circular RNAs (circRNAs) are a class of circular non-coding RNAs that play essential roles in the intricate and dynamic networks governing cell growth, development, and apoptosis. Resveratrol (RSV), a non-flavonoid polyphenol, is known to participate in follicular development and ovulation. In our previous research, we established a model using porcine ovarian granulosa cells (POGCs) treated with resveratrol, which confirmed its regulatory effects on long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) within these cells. However, the influence of resveratrol on circRNA expression has not been thoroughly investigated. To explore how resveratrol affects circRNA levels in POGCs, we designed an experiment with three groups: a control group (CON, n = 3, 0 μM RSV), a low-dose RSV group (LOW, n = 3, 50 μM RSV), and a high-dose RSV group (HIGH, n = 3, 100 μM RSV) for circRNA sequencing. We identified a total of 10,045 candidate circRNAs from POGCs treated with different concentrations of resveratrol (0, 50, and 100 μM). Differential expression analysis indicated that 96 circRNAs were significantly altered in the LOW vs. CON group, while 109 circRNAs showed significant changes in the HIGH vs. CON group. These circRNAs were notably enriched in biological processes associated with cell metabolism, apoptosis, and oxidative stress. Functional enrichment analysis of the host genes revealed their involvement in critical signaling pathways, including mTOR, AMPK, and apoptosis pathways. Additionally, we identified potential miRNA sponge candidates among the differentially expressed circRNAs, particularly novel_circ_0012954 and novel_circ_0004762, which exhibited strong connectivity within miRNA-target networks. Our findings provide valuable insights into the regulatory mechanisms of circRNAs in the context of resveratrol-induced apoptosis in POGCs, highlighting their potential as innovative therapeutic targets in reproductive biology.
Read full abstract