Biogenic hydrogen (bioH2) enriched compressed natural gas (bio-H-CNG or biohythane) is emerging interest due to its feasibility to use in the existing transportation infrastructure with induced environmental benefits. This study evaluated the production of bioH2and biomethane (bioCH4) towards bio-H-CNG formation at a varying organic load (OL: 30,40,50 g COD/L) of food waste (FW). Acidogenic reactor operated with FW at 40 g COD/L showed the highest cumulative bioH2production while elevated OL (50 g COD/L)showedhigher cumulative bioCH4production (CMP: 11.92 L) from the methanogenic reactor. BioH2 and bioCH4 produced at different time intervals were combined to assess bio-H-CNG. The nature of biocatalyst and OLsignificantly regulated the composition of bio-H-CNG varying between 0.1 and 0.3 of H2/(H2+CH4) ratio accounting for5–12.6 kJ/g COD. Chain elongation, converting short (C2-C4) to medium-chain fatty acids(Caproic acid,1.16 g/L) was specifically observed during the acidogenic process.
Read full abstract