Osteoarthritis (OA) presents a significant therapeutic challenge, with few options for preserving joint cartilage and repairing associated tissue damage. Inflammation is a pivotal factor in OA-induced cartilage deterioration and synovial inflammation. Recently, exosomes derived from human umbilical cord mesenchymal stem cells (HucMSCs) have gained recognition as a promising noncellular therapeutic modality, but their use is hindered by the challenge of harvesting a sufficient number of exosomes with effective therapeutic efficacy. Given that HucMSCs are highly sensitive to microenvironmental signals, we hypothesized that priming HucMSCs within a proinflammatory environment would increase the number of exosomes secreted with enhanced anti-inflammatory properties. Subsequent miRNA profiling and pathway analysis confirmed that interleukin-1 beta (IL-1β)-induced exosomes (C-Exos) exert positive effects through miRNA regulation and signaling pathway modulation. In vitro experiments revealed that C-Exos enhance chondrocyte functionality and cartilage matrix production, as well as macrophage polarization, thereby enhancing cartilage repair. C-Exos were encapsulated in hyaluronic acid hydrogel microspheres (HMs) to ensure sustained release, leading to substantial improvements in the inflammatory microenvironment and cartilage regeneration in a rat OA model. This study outlines a strategy to tailor exosome cargo for anti-inflammatory and cartilage regenerative purposes, with the functionalized HMs demonstrating potential for OA treatment.
Read full abstract