CD44, a pivotal cell surface molecule, plays a crucial role in many cellular functions, including cell-cell interactions, adhesion, and migration. It serves as a receptor for hyaluronic acid and is involved in lymphocyte activation, recirculation, homing, and hematopoiesis. Moreover, CD44 is a commonly used cancer stem cell marker associated with tumor progression and metastasis. The development of CD44 aptamers that specifically target CD44 can be utilized to target CD44-positive cells, including cancer stem cells, and for drug delivery. Building on the primary sequences of our previously selected thioaptamers (TAs) and observed variations, we developed a bead-based X-aptamer (XA) library by conjugating drug-like ligands (X) to the 5-positions of certain uridines on a complete monothioate backbone. From this, we selected an XA with high affinity to the CD44 hyaluronic acid binding domain (HABD) from a large combinatorial X-aptamer library modified with N-acetyl-2,3-dehydro-2-deoxyneuraminic acid (ADDA). This XA demonstrated an enhanced binding affinity for the CD44 protein up to 23-fold. The selected CD44 X-aptamers (both amine form and ADDA form) also showed enhanced binding affinity to CD44-overexpressing human ovarian cancer IGROV cells. Secondary structure predictions of CD44 using MFold identified several binding motifs and smaller constructs of various stem-loop regions. Among our identified binding motifs, X-aptamer motif 3 and motif 5 showed enhanced binding affinity to CD44-overexpressing human ovarian cancer IGROV cells with ADDA form, compared to the binding affinities with amine form and scrambled sequence. The effect of ADDA as a binding affinity enhancer was not uniform within the aptamer, highlighting the importance of optimal ligand positioning. The incorporation of ADDA not only broadened the XA’s chemical diversity but also increased the binding surface area, offering enhanced specificity. Therefore, the strategic use of site-directed modifications allows for fine-tuning aptamer properties and offers a flexible, generalizable framework for developing high-performance aptamers that target a wide range of molecules.
Read full abstract