Accurate preoperative identification of ovarian tumour subtypes is imperative for patients as it enables physicians to custom-tailor precise and individualized management strategies. So, we have developed an ultrasound (US)-based multiclass prediction algorithm for differentiating between benign, borderline, and malignant ovarian tumours. We randomised data from 849 patients with ovarian tumours into training and testing sets in a ratio of 8:2. The regions of interest on the US images were segmented and handcrafted radiomics features were extracted and screened. We applied the one-versus-rest method in multiclass classification. We inputted the best features into machine learning (ML) models and constructed a radiomic signature (Rad_Sig). US images of the maximum trimmed ovarian tumour sections were inputted into a pre-trained convolutional neural network (CNN) model. After internal enhancement and complex algorithms, each sample's predicted probability, known as the deep transfer learning signature (DTL_Sig), was generated. Clinical baseline data were analysed. Statistically significant clinical parameters and US semantic features in the training set were used to construct clinical signatures (Clinic_Sig). The prediction results of Rad_Sig, DTL_Sig, and Clinic_Sig for each sample were fused as new feature sets, to build the combined model, namely, the deep learning radiomic signature (DLR_Sig). We used the receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC) to estimate the performance of the multiclass classification model. The training set included 440 benign, 44 borderline, and 196 malignant ovarian tumours. The testing set included 109 benign, 11 borderline, and 49 malignant ovarian tumours. DLR_Sig three-class prediction model had the best overall and class-specific classification performance, with micro- and macro-average AUC of 0.90 and 0.84, respectively, on the testing set. Categories of identification AUC were 0.84, 0.85, and 0.83 for benign, borderline, and malignant ovarian tumours, respectively. In the confusion matrix, the classifier models of Clinic_Sig and Rad_Sig could not recognise borderline ovarian tumours. However, the proportions of borderline and malignant ovarian tumours identified by DLR_Sig were the highest at 54.55% and 63.27%, respectively. The three-class prediction model of US-based DLR_Sig can discriminate between benign, borderline, and malignant ovarian tumours. Therefore, it may guide clinicians in determining the differential management of patients with ovarian tumours.