The advancement of tissue engineering (TE) is driven by the development of scaffolds that mimic the mechanical, spatial, and biological environment of the extracellular matrix (ECM), crucial for regulating cell behavior and tissue repair. Hydrogels, 3D networks of polymer chains, are particularly suited for TE due to their high biocompatibility, ability to mimic tissue water content, facilitate cell migration, sustain growth factor release, and offer controllable physical properties. However, hydrogels mimicking the ECM often face challenges related to cell adhesion due to the absence of specific receptors. This issue can be addressed by incorporating ECM components into the polymer matrix, such as the peptide sequence arginine-glycine-aspartic acid (RGD), known for its role in cell adhesion. Additionally, carbon nanomaterials (CNMs) offer unique physicochemical properties that can improve scaffold-cell interactions. Despite the potential benefits, there are limited reports on their combination. RGD-CNM hydrogels enable a more accurate emulation of the natural cellular environment, enhancing tissue engineering applications. This hybrid approach may promote robust cell adhesion along with exceptional mechanical and electrical properties. This review outlines the potential benefits of these hybrid scaffolds and their synergistic potential, aiming to inspire new research directions in this innovative field.