Abstract
Angiogenesis plays a pivotal role in development and tissue growth, as well as in pathological conditions such as cancer. Being able to understand the basic mechanisms involved in the vascularization of tissues and angiogenic network formation provides a window to advance the development of in vitro tissue models and enhance tissue engineering applications. In this study, we leveraged a novel microfluidic-based three dimensional (3D) bioprinting technology and alginate-collagen type I (AGC) bioink, to develop a 3D bioprinting strategy to enable the biofabrication of complex angiogenic networks within the 3D structure. These networks were comprised of simian vacuolating virus 40 (SV40) transformed adult rat brain endothelial cell (SV-ARBEC)-laden hydrogel rings. With mechanical properties relevant for vascular tissue engineering applications, these bioprinted constructs formed spontaneous vascular networks, reminiscent of anisotropic tissue-like structures, while retaining high cellular viability. The vascular network formation was accompanied by extracellular matrix (ECM) remodeling, confirming sequential SV-ARBEC mediated collagen type I fiber deposition and reorganization. Treatment with broad spectrum matrix metalloproteinase (MMP) inhibitor supressed SV-ARBEC angiogenic sprouting, highlighting requirements of ECM remodeling in angiogenic network formation. This novel 3D microfluidic bioprinting technology and biocompatible AGC hydrogel fiber rings supported robust SV-ARBEC angiogenesis and corresponding ECM remodeling, allowing us to present a strategy suitable to advancing applications in vascular research and supporting the further development of disease models, novel testing beds for drug discovery and tissue engineering applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have